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Estimation from one large outbreak

Assume a homogeneously mixing community and no preventive
measures

From before: in case of a large outbreak and assuming everyone
was initially susceptible, the final fraction infected will be close to
the positive solution of

1− τ = e−R0τ

Inference other way around: we observe that a fraction τ̃ got
infected. What is R0?

Rewrite the equation: R0 = − ln(1− τ)/τ

Our estimate of R0 is given by the corresponding observed value:

R̂0 = − ln(1− τ̃)/τ̃

Exercise 14: Estimate R0 if 20% were infected during an outbreak
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Estimation from one large outbreak

This estimate assumed everyone was initially susceptible!

If in fact a fraction r was initially immune we know from before
that τ , the fraction among the initially susceptible who got
infected approximately equals positive solution of

1− τ = e−R0(1−r)τ

This leads to the estimate:

R̂0 = − ln(1− τ̃)/(1− r)τ̃

Note: The over all fraction infected equals τ̃(1− r)

Exercise 15: Suppose as before that 20% were infected during an
outbreak, but that only 50% were initially susceptible and the rest
were immune. Compute first τ̃ and then estimate R0
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Estimation of vc from one large outbreak

It was shown earlier that: vc = 1− 1/R0

By observing an outbreak we can hence also estimate vc (for the
same or similar community but not for any community!):

v̂c = 1− 1

R̂0

= 1− τ̃

− ln(1− τ̃)

If a fraction r was immune in the observed outbreak and τ̃ of the
initially susceptibles were infected this changes to

v̂c = 1− 1

R̂0

= 1− (1− r)τ̃

− ln(1− τ̃)
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Estimation of vc from one large outbreak

If vaccine not perfect but efficacy E known vc estimated by

v̂c =
1

E

(
1− 1

R̂0

)
=

1

E

(
1− (1− r)τ̃

− ln(1− τ̃)

)

Exercise 16. Suppose as previous exercise that 20% of the
community got infected but the initial fraction susceptible was
50% (so 40% of these susceptibles were infected). Estimate the
critical vaccination coverage for a vaccine having 90% efficacy.
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Repetition: Inference from large outbreaks

From before: basic reproduction number R0 and critical vaccination
coverage vc were estimated by:

R̂0 = − ln(1− τ̃)/τ̃

v̂c = 1− τ̃

− ln(1− τ̃)

if outbreak takes place in a fully susceptible homogeneous
community resulting in a fraction τ̃ getting infected during the
outbreak

How about uncertainty?
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Uncertainty of previous estimate

Intuition: The larger community (and more getting infected) the
less uncertainty

It was mentioned that final number infected nτ̃ = Z in case of a
major outbreak is normally distributed with mean nτ∗ and standard
deviation

√
nσ2 where σ2 depends on model parameters and shown

two slides ahead

This result can be used to show that R̂0 and v̂c are normally
distributed with correct means (i.e. R0 and vc respectively) and
standard errors to be derived using δ-method
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The δ-method

Suppose random variable X has mean µ = E (X ) and variance
V (X ). Suppose further that we are mainly interested in the
distribution of f (X ) for some function f (·) rather than X itself

Then the δ-method gives the following approximation for the mean
and variance of f (X ), where f (x) is a ”nice function”:

Main idea Taylor expand X around its mean µ:
f (X ) ≈ f (µ) + (X − µ)f ′(µ). This implies:

E (f (X )) ≈ f (µ) V (f (X )) ≈ (f ′(µ))2 V (X ).

The approximation holds better the smaller variance X has (i.e.
smaller V (X )).

We will use it for e.g. f (X ) = − ln(1− X )/X and with X = τ̃ so
that f (τ̃) = R̂0
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The δ-method for V (R̂0)

Probabilists have proven that the asymptotic variance of τ̃ equals:

V (τ̃) ≈ 1

n

τ(1− τ)

(1− (1− τ)R0)2

(
1 + c2

v (1− τ)R2
0

)
where τ and R0 are the true parameter values related by
R0 = − ln(1− τ)/τ , and cv is the coefficient of variation of the
infectious period.

We now apply the δ-method on R̂0 = − ln(1− τ̃)/τ̃ , we hence
have the function f (x) = − ln(1− x)/x

After some algebra we get V (R̂0) ≈ 1
nτ(1−τ)

(
1 + c2

v (1− τ)R2
0

)
For a standard error estimate we take square roots and replace
unknown quantities with there estimates/observed values. The
result, also for v̂c , is given by:
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Uncertainty of previous estimate

s.e.(R̂0) =

√
1 + c2

v (1− τ̃)R̂2
0

τ̃(1− τ̃)
/n

s.e.(v̂c) =

√
1 + c2

v (1− τ̃)R̂2
0

R̂4
0 τ̃(1− τ̃)

/n

c2
v = V (I )/(E (I ))2= squared coefficient of variation of infectious

period of individuals (variance divided by the squared mean)

Larger n gives smaller standard deviation (as expected)!
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Uncertainty of previous estimate

c2
v cannot be estimated from final outbreak size – possibly known

from before

If not one has to insert a ”conservative” bound. E.g. c2
v = 1: very

rarely is standard deviation larger than mean

Exercise 25 Suppose that 239 out of 651 individuals in an isolated
village were infected during an outbreak. Estimate R0 and vc and
give 95% confidence interval for the estimates. Consider both the
case when all individuals have the same length of infectious period
(so no variation) and the case where its standard deviation is equal
to the mean.

Exercise 26 Do the same thing assuming 2390 out of 6510 got
infected.
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Estimation in the early phase of an epidemic

The initial growth: During the early phase of an epidemic
incidence as well as prevalence typcially grows exponentially:

I (t) ∼ ert

ρ (or r) called the Malthusian parameter
ρ depends both on R0 and the generation time distribution g0(s)
Branching process theory: ρ solution to Euler-Lotka equation

R0

∫ ∞
0

e−ρsg0(s)ds = 1

So if we know the generation time distribution g0(·) we can
estimate R0 from observing the exponential growth ρ!

It is easy to show that if g0(s) ∼ Γ(α, β) then Euler-Lotka gives
that

R0 =

(
ρ

β
+ 1

)α
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Covid-19: R0 estimates, first wave (original strain)

Covid-19: A common estimate is that g0(s) ∼ Γ with mean 6.5
days and s.d. 4 days (see however below!). We assume this to
apply to all countries!

We estimate ”country” specific ρ from reported cumulative case
fatalities: starting first day with > 50 cumulative case fatalities
(C1) and two weeks later C15 case fatalities: ρ̂ = ln(C15/C1))/14
(Data: Worldometer)

Common dates: first half of March to end of March (before effects
of lockdown)

When 50 have died, between 5 000 and 20 000 had been infected
so not VERY early in epidemic which is usually atypical and faster
(Norway and Denmark: start instead when > 10 have died)
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Covid-19: R0 estimates, cont’d

Country C1 C15 ρ̂ R̂0 ĥC

”Norway” 12 89 0.14 2.2 54%
”Denmark” 13 161 0.18 2.6 62%
”Sweden” 62 687 0.17 2.5 60%

”Germany” 68 1275 0.21 3.0 67%
”Belgium” 67 1283 0.21 3.0 67%

”UK” 65 2043 0.25 3.5 71%
”Spain” 55 3647 0.30 4.3 77%

(hC = critical vaccination coverage for herd immunity)

=⇒ There is not one correct R0 for covid-19!!

Big differences also within countries!
(Sweden starting when > 10 had died gave R̂0 =3.1)
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Problems with estimating g0(s) and its consequences

Details: see Britton & Scalia Tomba (2019)

How estimate generation time distribution g0(s)?

Answer: Contact tracing: For some identified cases, it is traced by
whom and when they were infected

This gives some observed generation times g1, . . . , gk . This is often
only way, but problematic:

Generation time defined forward in time but contact tracing
backward in time. Problematic?
For some cases a unique infector and infection time is
identified, but for some there are several possibilities (and
some have none)
onset of symptoms more common to observe than infection
times
Identified cases are often severe cases. Do mild/asymptomatic
cases have same generation times?
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Toy example

Suppose that R0 = 2, and each infected infects one individual after
1 week and one individual after 2 weeks (g0(1) = g0(2) = 0.5)

What is E (G )?

1.5 weeks, and st.d .(G )? 0.5 weeks (below plot of
# infections each week)

Tom Britton Introduction to inference for epidemic outbreaks



Estimation of R0 from final outbreak size
Estimating R0 during the early stage of an outbreak

Estimating Rt , the current reproduction number

Toy example

Suppose that R0 = 2, and each infected infects one individual after
1 week and one individual after 2 weeks (g0(1) = g0(2) = 0.5)

What is E (G )? 1.5 weeks, and st.d .(G )? 0.5 weeks (below plot of
# infections each week)
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Looking backwards: contact tracing

Fibonacci numbers and the Golden ratio ...

=⇒ The mean generation time when contact tracing will be < 1.5

So if you estimate E (G ) (or all of G ) from contact tracing you will
under-estimate E (G )
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Generation times vs Serial intervals

Serial intervals instead of generation times

(We now forgetproblem of looking backwards)

Infection times are hardly ever observed, but onset of symptoms are

G = time between infection times (unobserved)

S = time between onset of symptoms (observed)
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Generation times vs Serial intervals, cont’d

Generaton times vs Serial intervals
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Generation times vs Serial intervals, cont’d

=⇒ S = G + (D2 −D1) (D1 and D2 = incubation periods of
infector and infectee)

So, if incubation times are independent and independent of G, then

E (S) = E (G ), and V (S) ≥ V (G )

(The relation holds true for all (?) epidemic models)

So, if we estimate G ∼ {g0(s)} from observations on Serial
intervals we will over-predict variance of G
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Multiple exposures

Another problem when contact tracing is that sometimes there are
several potential infectors (see illustration on next slide)
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Multiple exposures

If observations with more than one infected are neglected,
remaining intervals are biased from below.

This will also lead to under-estimation of E (G )

Conclusions: looking backwards and neglecting multiple exposures
lead to under-estimation of E (G ) and observing serial intervals
rather than generation intervals lead to over-estimation of V (G )

We now see how this can affect estimates of R0
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Effects of bias in estimates of g0(s)

I (t) = incidence day t = # infected day t (now discrete time)

How many that get infected day t depends on: R0 =, basic
reproduction number and {g0(s)} = Generation time

– how many that got infected s days ago? Answer: = I (t − s)

Model definition (common model)

I (t) ∼ Pois

(
R0

t∑
s=1

g0(s)I (t − s)

)
, t = 1, 2 . . . , (∗)

”Pois( )” means Poisson distribution, and the mean equals the
parameter, R0

∑t
s=1 g0(s)I (t − s)

Exercise 17.c: Show that this is more or less identical to the
Euler-Lotka equation (Hint: replace the Poisson random variable by
its mean)
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Effects of bias in estimates of g0(s) (cont’d)

I (t) ∼ Pois

(
R0

t∑
s=1

g0(s)I (t − s)

)
, t = 1, 2 . . . , (∗)

If {g0(s)} known (or estimated), Eq. (∗) can be used for:

1: Estimating R0 (from observed incidence I (1), . . . , I (t)), or
2: Predicting outbreak incidence I (1), . . . , I (t) (if R0 known
before-hand)

Both 1 and 2 require knowledge about {g0(s)}

Main question: How to estimate generation time distribution
{g0(s)} and what happens to estimates of R0 (or predictions
I (1), I (2), . . . ) if {g0(s)} is estimated incorrectly?
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Effects of bias in estimates of g0(s) (cont’d)

Recall, I (t) ∼ Pois
(
R0
∑t

s=1 g0(s)I (t − s)
)

where I (0), . . . , I (t) grows, typically exponentially

How are estimates of R0 (or predictions I (1), . . . , I (t)) affected by
the generation time distribution {g0(s)}?

It is easy to show that the mean parameter

R0
∑t

s=0 g0(s)I (t − s) increases if:

– g0(s) is replaced by ĝ0(s) which has smaller mean

– g0(s) is replaced by ĝ0(s) which has same mean and larger
variance

So, if our estimate of {g0(s)} has mean biased from below we will
under-estimate R0

And if we estimate {g0(s)} by something with the correct mean
but larger variance we will under-estimate R0
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Effects of bias in estimates of g0(s) (cont’d)

Recall, I (t) ∼ Pois
(
R0
∑t

s=1 g0(s)I (t − s)
)

where I (0), . . . , I (t) grows, typically exponentially

How are estimates of R0 (or predictions I (1), . . . , I (t)) affected by
the generation time distribution {g0(s)}?
It is easy to show that the mean parameter

R0
∑t

s=0 g0(s)I (t − s) increases if:

– g0(s) is replaced by ĝ0(s) which has smaller mean

– g0(s) is replaced by ĝ0(s) which has same mean and larger
variance

So, if our estimate of {g0(s)} has mean biased from below we will
under-estimate R0

And if we estimate {g0(s)} by something with the correct mean
but larger variance we will under-estimate R0
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Effects of bias in estimates of g0(s) (cont’d)

Recall, I (t) ∼ Pois
(
R0
∑t

s=1 g0(s)I (t − s)
)

where I (0), . . . , I (t) grows, typically exponentially

How are estimates of R0 (or predictions I (1), . . . , I (t)) affected by
the generation time distribution {g0(s)}?
It is easy to show that the mean parameter

R0
∑t

s=0 g0(s)I (t − s) increases if:

– g0(s) is replaced by ĝ0(s) which has smaller mean

– g0(s) is replaced by ĝ0(s) which has same mean and larger
variance

So, if our estimate of {g0(s)} has mean biased from below we will
under-estimate R0

And if we estimate {g0(s)} by something with the correct mean
but larger variance we will under-estimate R0
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Effects of bias in estimates of g0(s) (cont’d)

A few slides back we showed three problems when estimating g0(s)
from contact tracing:

1) Looking backwards rather than forward in time: g0(s) was
biased from below (E (G0) under-estimated)
=⇒ R0 will be under-estimated

2) What if multiple infector candidates: g0(s) was biased from
below (E (G0) under-estimated)
=⇒ R0 will be under-estimated

3) Observing Serial intervals instead of Generation times g0(s) has
too large standard deviation (V (G0) over-estimated)
=⇒ R0 will be under-estimated

Conclusion: Unless taken account for, all three problems make R0

under-estimated. See Britton & Scalia-Tomba (Interface, 2019)
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Effects of bias in estimates of g0(s) (cont’d)

A few slides back we showed three problems when estimating g0(s)
from contact tracing:

1) Looking backwards rather than forward in time: g0(s) was
biased from below (E (G0) under-estimated)
=⇒ R0 will be under-estimated

2) What if multiple infector candidates: g0(s) was biased from
below (E (G0) under-estimated)
=⇒ R0 will be under-estimated

3) Observing Serial intervals instead of Generation times g0(s) has
too large standard deviation (V (G0) over-estimated)
=⇒ R0 will be under-estimated

Conclusion: Unless taken account for, all three problems make R0

under-estimated. See Britton & Scalia-Tomba (Interface, 2019)
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Biases for Ebola and COVID-19

For Ebola 75% of contacts had multiple potential infectors. The
combinded under-estimation of R0 was ≈ 23%

For Corona (Covid19) there was no information of multiple
infectors (but I am sure there were!), so only considering bias from
backward tracing we believe R0 is under-estimated by ≈ 12%.
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The current (or daily) reproduction number Rt

Later on in the epidemic infected individuals no longer infect on
average R0 new individuals for two reasons:

- Some individuals are immune (due to infection and/or
vaccination)

- Preventive measures of various forms may have reduced contacts,
transmission risks and/or period of infection

If a fraction of immune individuals equals i and the overall
reduction in infectious contacts by all preventive measures equals
p, then the current reproduction number Rt around calendar time
t equals

Rt = R0(1− i)(1− p)
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Estimating Rt from recent incidence

However, if we observe incidence around time t and know the
current generation time distribution gt(·), we can estimate Rt

directly from

I (t) ∼ Pois

(
Rt

∑
s

gt(s)I (t − s)

)
, (∗∗)

(averaging over a few days around t).

But usually gt(·) replaced by g0(·) (the initial generation time
distribution) ...
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GTD changes when preventive measures are adopted

Favero, Scalia Tomba and Britton (2022)

During covid-19 pandemic preventive measure have been enforced
and we have changed behaviour:

1. Social distancing in general

2. Self-isolation upon symptoms

3. Screening - testing

4. Contact tracing diagnosed cases

All of these reduce the daily reproduction number Rt (the average
number of infections made by an infected now)

But some also change the timing when infections happen, so
changes the GTD
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A model to investigate effect of prevention on GTD

Contact process:

C = {C (t)}t≥0 with C (t) =

{
C1, if t ≤ τ
C2, if t > τ

C1: base contact rate (r.v)
C2: reduced contact rate (r.v)
τ : reduction-time (r.v) e.g. onset or detection

Different definitions of
τ,C1,C2, allow modelling
contacts in several
scenarios, with or without
interventions

Infectiousness process:

X = {X (t)}t≥0 : probability of
infection at time t (given a contact)
e.g. X (t) = pI[0,I ](t) (SIR)
Our focus: X (t) = X1h(X2t),
h deterministic function, X1,X2 r.v.’s

Infectivity proc: λ(t) = C (t)X (t)

Tom Britton Introduction to inference for epidemic outbreaks



Estimation of R0 from final outbreak size
Estimating R0 during the early stage of an outbreak

Estimating Rt , the current reproduction number

Effects of various preventions:

Infectivity function: β(t) = E (C (t)X (t))

Basic reproduction number: R0 =
∫∞

0 β(t)dt

Generation time density (GTD): fG (t) = β(t)/R0

Various preventions (all reduce R but):

Overall contact-reduction: C → ρC (no effect on GTD!)

Face masks: X (·)→ ρX (·) (no effect on GTD!)

Isolation of symptomatic/confirmed: C2 → ρC2 (reduces GTD!)

Screening: τ = min{TSympt ,Tscre} (reduces GTD!)

Contact tracing: τ = min{TSympt ,TCT} (reduces TGD!)

Effects on GTD depends on model assumptions and is quite
complicated, in particular contact tracing
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Illustration: Isolating symptomatic individuals

τ = TS C2 = ρC1 X (t) = X1h(tX2)

Asymptomatic cases: about 1/3

ρ R R(1) R(2) mean
gen.
time
(mgt)

1 3.76 1.64 2.11 8.24
0.9 3.54 1.64 1.90 8.11
0.8 3.33 1.64 1.69 7.96
0.7 3.12 1.64 1.48 7.79
0.6 2.91 1.64 1.27 7.60
0.5 2.70 1.64 1.06 7.38
0.4 2.49 1.64 0.84 7.12
0.3 2.39 1.64 0.63 6.81
0.2 2.07 1.64 0.42 6.44
0.1 1.85 1.64 0.21 5.98
0 1.64 1.64 0 5.41

Example: ρ : 0.5→ 0.1 implies R reduced by 31% and mgt by 19%
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Illustration: Isolating symptomatic individuals

τ = TS C2 = ρC1 X (t) = X1h(tX2) MGT= mean
generation time

Asymptomatic cases: about 1/3

ρ R R(1) R(2) MGT

1 4.54 1.73 2.81 7.57
0.9 4.26 1.73 2.53 7.48
0.8 3.98 1.73 2.25 7.38
0.7 3.70 1.73 1.97 7.28
0.6 3.42 1.73 1.69 7.15
0.5 3.14 1.73 1.41 6.99
0.4 2.86 1.73 1.13 6.82
0.3 2.57 1.73 0.84 6.59
0.2 2.29 1.73 0.56 6.31
0.1 2.01 1.73 0.28 5.96
0 1.73 1.73 0 5.48

Example: ρ : 0.5→ 0.1 implies R reduced by 36% and mgt by 15%
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Covid example and effect on bias

Combining preventions (added isolation, screening and CT) where
we have ”guessed” suitable values reduces

R = 3.9 → R = 1.45 (reduction by 62%)

E (G ) = 7.4 → E (G ) = 5.8 days (reduction by 22%)

Inferring Rt

Suppose we observe (increasing) incidence {I (t)} for this situation
(Rt = 1.45 and mean gen-time E (G ) = 5.8)

If we use this new correct GTD and apply Euler-Lotka estimating
equations we get R̂t ≈ 1.45 as it should

However, if we instead used the original GTD with mean 7.4 days
(as most do!) we would get R̂t ≈ 1.75, so biased by > 20%

Rt-estimates that use early GTD-estimates are biased from
above (or more accurately ”biased away from 1”)
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Thanks for your attention!
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