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Different heterogeneities

In reality individuals behave differently both

in terms of susceptibility and infectivity given that a ”contact”
takes place, and

in terms of whom they have contact with

Previous results assumed individuals have equal susceptibility and
infectivity AND that they ”mix” uniformly

Question: Does this simplification make results useless?

Qualitative answer: The more infectious a disease is the less
”problematic” is this simplification

=⇒ ok for measles (except immunity) but not ”valid” for STDs

Many different heterogeneities: individual susceptibility,
infectivity and social activity (multitype epidemics), household
structure (macro individuals), spatial structure, social networks
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Individual heterogeneities

In several situations individuals can be grouped into different types
of individual

Different types may differ in terms of susceptibility + infectivity

Examples: infants – school children – adults, male – females,
partially immune (vaccinated) – fully susceptible

Natural extension: Multitype epidemic model

Let πj = community fraction of type j , j = 1, . . . , k

Suppose an i-individual infects a given type-j individual at
rate βij/n and recovers at rate 1/ν

Exercise 21 How many j-individuals does an i-individual on
average infect when everyone is susceptible?
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Multitype epidemics

Answer: nj
βij

n ν (=numbers at risk * infection rate * average length
of infectious period) = βijνπj

The matrix with these elements defines the expected number of
new infections of various types caused by individuals of various
types:

M = (mij) = (βijνπj)

Often referred to as next generation matrix

R0 = largest eigenvalue to this matrix (same interpretations as
before)

In general no explicit expression, but if βij = αiγj (”separable
mixing”) then R0 =

∑
i αiγiνπi
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Multitype epidemics

Exercise 22 Interpret αi and γj

Exercise 23 Compute R0 for the case: π1 = π2 = 0.5, ν = 1 and
β11 = 1, β12 = β21 = 2 and β22 = 4 which obeys separable mixing
assumpion. Is the answer surprising?

Tom Britton Stochastic epidemic models with population structure



Individual heterogeneities
Epidemics on a fixed social network

An SIR epidemic on an adaptive social network

Household epidemics

Previous heterogeneity mainly for ”individual heterogeneities”

Equally (or more!) important: which individuals people have
contact with

For many diseases (influenza, childhood disease, common cold)
transmission within households is high

=⇒ Important with models allowing for higher transmission within
households

Households are small =⇒ randomness important
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Networks

For some diseases (e.g. STDs) individuals are not connected in
small sub-units

Common representation of social structure: network/graph with
nodes (individuals) and edges (“friendship”)
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Random networks

Social structure only partly known: modelled using random
graph/network with structure

Some (potentially observed) local structures

D = # friends of randomly selected individual (degree
distribution)

c = P(two friends of an individual are friends) (clustering)

ρ = correlation of degrees in a randomly selected friendship
(degree correlation)

Other features unobserved =⇒ Random network
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Stochastic epidemic model ”on” network

Also spreading is uncertain =⇒ stochastic epidemic model ”on”
the (random) network

Simplest model: an infected person infects each susceptible friend
independently with prob p and then recovers (one index case)

Effect on graph: thinning – each edge is removed with prob 1− p

Interpretation: remaining edges reflect ”potential spreading”
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Graph and its thinned version

Those connected to index case make up final outbreak
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The degree distribution and its effect on R0

Case study: Network epidemic model with arbitrary degree
distribution {pk}

Social structure: Individuals have degree distribution
D ∼ {pk} and ”friends” are chosen completely at random

Epidemic model: each susc. friend is infected with prob p

1 randomly selected index case, n − 1 susceptibles

What is R0?

R0 = pE (D)?– Wrong!

R0 = p(E (D)− 1)?– Wrong!
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The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Answer: {p̃k ; k ≥ 1}, where p̃k = const · kpk = kpk/E (D)

=⇒ R0 = p(E (D̃)− 1) = · · · = p

(
E (D) +

V (D)− E (D)

E (D)

)

Empirical networks have heavy-tailed degree distributions ...
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak

Who are vaccinated?

a) Randomly chosen individuals

=⇒ Rv = p(1− v)(E (D̃)− 1) = (1− v)R0

=⇒ if v ≥ 1− 1/R0 then Rv ≤ 1 =⇒ no outbreak!

Critical vaccination coverage: vc = 1− 1/R0

Problem: If R0 large (e.g. due to large V (D)), vc ≈ 1 =⇒
impossible!
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Vaccination, cont’d

Can we do better than selecting vaccinees randomly?

Yes! Vaccinate social people

But social network usually not observed ...

b) Acquaintance vaccination strategy

Choose individuals at random

vaccinate one of their friends

Vaccinees will have degree distribution {p̃k} rather than {pk}

Britton, Janson & Martin-Löf (2007)

=⇒ much more efficient
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Proportion infected as function of v , D ∼ Poisson

Tom Britton Stochastic epidemic models with population structure



Individual heterogeneities
Epidemics on a fixed social network

An SIR epidemic on an adaptive social network

Proportion infected as function of v , D ∼ heavy-tailed
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Network epidemics: summary and exercise

Main conclusion:

Not only mean number of partners but also variance
important!

Core-groups play important roll

Large variance of degree distribution imply large R0 (but not
necessarily large outbreak)

Important extensions: time-dynamic network, clustering,
varying/dependent transmission probabilities, degree correlation

Exercise 24. Suppose the mean degree equals E (D) = 3 and the
transmission probability per relationship equals p = 0.25. Compute
R0 and vc (assuming uniform vaccination) assuming the standard
deviation

√
V (D) of number of partners equal 0, 1, 3, 10.
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Homogeneous vs Heterogeneous: qualitative results

We now illustrate a general conclusion with an example (from the
network model defined earlier)

Recall that R0 = p
(
E (D) + V (D)−E(D)

E(D)

)
Consider two networks with the same mean degree E (D) = 4

Network 1: D ≡ 4, so V (D) = 0 and E (D) + V (D)−E(D)
E(D) = 3

Network 2: P(D = 1) = P(D = 7) = 0.5, so V (D) = 9 and

E (D) + V (D)−E(D)
E(D) = 5.25

Infectious Disease 1: p = 0.25

Network 1: R0 = 3/4 = 0.75, Network 2: R0 = 5.25/4 = 1.31

=⇒ R0 larger for Network 2. Outbreak not possible in Network 1
but possible for Network 2
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Homogeneous vs Heterogeneous: qualitative results, cont’d

Infectious Disease 2: p=0.75

Network 1: R0 = 3 · 0.75 = 2.25,
Network 2: R0 = 5.25 · 0.75 = 3.93

=⇒ R0 larger for Network 2. Outbreak possible in both networks

Which outbreak will be bigger?

Outbreak in Network 1 since in
Network 2-individuals with deg 1 have a good chance to escape!

General conclusion. (Starting with a homogeneous situation):
– Heterogenizing always increases R0

– If original (=homogeneous case) R0 is small, then outbreak will
be bigger in heterogeneous case

– But if original R0 is large, then heterogenizing makes outbreak
smaller!!!
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Individual prevention – Adaptive dynamics

Without preventive measures modelling predicts that some fraction
τ(θ) will get infected θ = model parameters

However, for severe diseases individuals will take precautions even
without Public Health: isolation, distancing from infected,
improved sanitation, using condom, ...

Empirical evidence (e.g. Ebola): spreading drops over time more
than predicted by models, and final size often � τ(θ)

Adaptive dynamics: models where individuals change behaviour
as an effect of the (epidemic) process

Our focus: Analyse the effect of social distancing from
neighbouring infectives in an epidemic model on a social network
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Network SIR Epidemic model with Social Distancing

Leung et al. (2018), Ball et al (2019), Ball & B (2021)

Consider a large fixed community of size n. Continuous time

Network model:
Configuration model : nodes have i.i.d. degrees D ∼ {pk}
(µ := E (D)) and edge-stubs are connected pairwise at random.

N.B.: network of friendships is static in absence of epidemic!

Transmission model (SIR): infectious individuals transmit to
each susceptible neighbour at rate λ, and infectious individuals
recover and become immune at rate γ

Social distancing: Susceptibles having infectious neighbours ...
... rewires such edges (to a uniformly chosen individual) at rate ωα
... drops such edges at rate ω(1− α)
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Comments on model

Model parameters: λ (=transmission rate), γ (=recovery rate),
ω (=dropping/rewiring rate), α = P(rewiring), and D degree
distribution (µ = E (D))

Simplifying assumptions: No latent period, constant infectivity
during infectious period, Markov assumption, ...

The case ω = 0: well understood (e.g. Ball and others)

Dropping model (α = 0) quite hard to analyse,
General model (α > 0) very hard to analyse

Complication reason: the probability to get infected from
neighbours now changes over course of epidemic

Easy result: Rewiring/dropping is rational from individual
perspective: the probability to get infected decreases with rate at
which (s)he drops/rewires!
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Illustration of dropping/rewiring
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Beginning of epidemic

In beginning of epidemic (when fraction infected still small) the
model can be approximated by a branching process

Rewiring or dropping doesn’t matter (so α irrelevant): during early
stages all rewirings are to susceptibles and have no effect

B-P: An individual who gets infected during early stages has
size-biased degree distr D̃ ∼ {kpk/µ} (where µ = E (D))

Its infector is infected, all other D̃ − 1 are susceptible, =⇒

R0 = E (D̃ − 1)P(infect neighbour) =

(
E (D2)

E (D)
− 1

)
λ

λ+ γ + ω

So R0 increases in λ and decreases γ and ω (as expected)

No major outbreaks for large ω, (R0 = R0(ω) < 1 for large enough
ω)
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Final size τ : Dropping model (α = 0)

Equivalent Def of Dropping model: infectious individuals
”inform” each susceptible neighbour, independently, at rate ω
(when informed, the connection is dropped)

Related Modified model: infectious individual inform all
neighbours at the same time (still having rate ω)

In Modified model all edges (with transmission potential) from
infective are dropped at the same time

=⇒ Modified model is equivalent to model without rewiring:
ω = 0, and γ → γ + ω for which results are available

=⇒ τ = τ(ω) decreases with ω (as expected)

Result for Dropping model: Initial phase as described above.
Final LLN fraction infected τ same as model without dropping but
increased recovery rate γ + ω (CLT different but available)
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Final size τ : General model

Much harder to analyse

As a function of rewiring/dropping rate ω

Theorem: There exists degree distribution D and (λ0, γ0, α0) for
which τ = τ(ω) initially increases, i.e. τ(ω) > τ(0) for small ω

(=⇒ Bigger outbreak with social distancing!)

Heuristic explanation:
– An individual with high degree will most likely get infected even
if rewiring at small rate
– After such rewiring events the individual may get connected to
individuals who previously had low degree and would likely have
avoided infection
=⇒ reduced infection risk more than compensated by increased
possibility to infect low degree individuals
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τ(ω)

τ(ω) increasing seem to happen when:
– R0 is large, and
– Many individuals with low degree, and a few with high

Result would be more pronounced if rewiring was focused towards
low degree individuals (which is better from an individual’s
perspective)
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Illustration τ(ω): pk = c/(k + 1), k = 0, .., 10, n = 5000
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Simulations and empirical networks

So τ(ω) can increase in semi-realistic degree distributions

How about empirical networks?

We simulated our SIR epidemic model with rewiring on 10-15
empirical networks in the Stanford network data base

We observed τ(ω) initally growing in 2 of them: Social circles on
Facebook, and Collaboration network of ArXiv on general relativity
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Empirical networks: Collaboration network
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τ(λ): General model (Ball & Britton, 2021)

Final size τ = τ(λ) as a function of transmission rate λ

Consider E-R network (D ∼ Po(µ))

Fix µ > 1, γ, ω and α > 0.

Set λc = (γ + ω)/(µ− 1) (=⇒ R0(λc) = 1 and τ(λc) = 0)

Theorem: If γ < ω(2α− 1) and µ > 2αω/(ω(2α− 1)− γ), then

lim
λ↓λc

τ(λ) > 0
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Illustration τ(λ): µ = 5, γ = 1, α = 1, n = 10000

Left panel: ω = 1.5 (continuous) Right panel: ω = 4 (discont)
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Extensions and Open problems

Many solved as well as open problems for various extentions

Considering different types of individual (Multitype epidemic)

Including other preventive measures

Including social structures: network epidemics, household
epidemics, ...

SEIR, SIRS, ,,,

Dynamic population and dynamic behaviour

Spatial aspects and mobility

Virus evolution and immunity waning

Estimation!!!

...
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